The effect of stimulus visibility on visual field inhomogeneities

E. Leslie Cameron\(^1\), Michael W. Levine\(^2,3\), Jennifer E. Anderson\(^2\)
\(^1\)Department of Psychological Science, Carthage College
\(^2\) Department of Psychology, University of Illinois at Chicago
\(^3\) Laboratory of Integrative Neuroscience, University of Illinois at Chicago

INTRODUCTION
- Performance across the visual field is not homogenous, even at equal eccentricities.
- Visual (performance) field inhomogeneities have been the subject of considerable investigation, but some aspects of these inhomogeneities, such as the vertical meridian asymmetry (VMA) or “north effect” – particularly poor performance at the location directly above the point of regard (Carrasco et al., 2001) – are less well understood.
- The VMA depends upon the visual stimulus.\(^1\)

METHODS

Experiment 1: Manipulating contrast & task difficulty.
- Participants
 - 2 non-naïve participants (LC & IB) & 4 naïve (college-aged) observers
 - Normal or corrected-to-normal vision
- Stimuli
 - 0.5 and 8 cpd 2.0 deg. Gabor patches, tilted clockwise or counterclockwise, presented for 54 ms at one of 8 isoeccentric locations (4.5 deg. eccentricity) in one of 3 conditions:
 - 2 deg tilt at “high” contrast
 - 15 deg tilt at “medium” contrast
 - 90 deg tilt at “low” contrast
- Task
 - 2-AFC orientation discrimination task
 - Prior to data collection established “baseline” parameters to obtain ~80% PC for each observer
 - 2000 trials per condition

Experiment 2: Complex (high contrast) images.
- Participants
 - 12 naïve (college-aged) observers
 - Normal or corrected-to-normal vision
- Stimuli
 - Natural images presented for 70 ms at one of 8 isoeccentric locations (4.5 deg) in one of 4 conditions:
 - horse vs. monkey (8 practice trials)
 - scenes vs. scenes with animals (32 stimuli)
 - biological vs. non-biological (36 stimuli)
 - cats vs. dogs (40 stimuli)
- Task
 - 2-AFC task: discriminate between images (e.g., cat vs. dog)

RESULTS

Table: Performance field inhomogeneities depend on grating contrast at low SF.

SUMMARY & DISCUSSION
- The visual field is not homogenous, even at a fixed eccentricity. This has been well documented in a number of studies (e.g., Abrams, Nizam & Carrasco, 2012; Carrasco et al., 2001) and replicated here.
- Performance field inhomogeneities are less pronounced at high contrast, when equated for task difficulty.
- Spatial frequency is an important parameter – performance field inhomogeneity is pronounced even for high contrast stimuli at high SF (8.0 cpd). (But note small range of contrasts.)
- Performance fields are homogeneous for complex, high contrast images.

Remaining Questions:
- Do these data make ecological sense? (Note: We are unaware of “north effect” in typical visual experience.)
- Is the extent of performance field inhomogeneity due to a complex interaction between spatial frequency and contrast?
- How does task impact the performance field inhomogeneity?

REFERENCES

Acknowledgements
This study was supported by intramural funds from Carthage College. Ian Brodie, Janie Patel and Gary McMillan all contributed significantly to the project.

Meeting of Vision Sciences, Sarasota, FL.